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Abstract: One of the typical goals of collaborative filtering algorithms is to produce rating predic-

tions with values very close to what real users would give to an item. Afterward, the items having 

the largest rating prediction values will be recommended to the users by the recommender system. 

Collaborative filtering algorithms can be applied to both sparse and dense datasets, and each of 

these dataset categories involves different kinds of risks. As far as the dense collaborative filtering 

datasets are concerned, where the rating prediction coverage is, most of the time, very high, we 

usually face large rating prediction times, issues concerning the selection of a user’s near neigh-

bours, etc. Although collaborative filtering algorithms usually achieve better results when applied 

to dense datasets, there is still room for improvement, since in many cases, the rating prediction 

error is relatively high, which leads to unsuccessful recommendations and hence to recommender 

system unreliability. In this work, we explore rating prediction accuracy features, although in a 

broader context, in dense collaborative filtering datasets. We conduct an extensive evaluation, using 

dense datasets, widely used in collaborative filtering research, in order to find the associations be-

tween these features and the rating prediction accuracy. 

Keywords: collaborative filtering; recommender systems; personalisation; dataset density; rating 

prediction accuracy; accuracy features; evaluation 

 

1. Introduction 

One of the most widely applied recommender system (RS) methods, over the last 20 

years, is collaborative filtering (CF) [1,2]. The typical goal of a CF algorithm is to produce 

rating predictions for products or services that users have not already evaluated. The 

closer these rating predictions are to the rating values that the users themselves would 

give to these products or services, the higher accuracy the CF algorithm will have. 

Afterwards, based on the aforementioned rating predictions, a CF RS will typically 

recommend, to each user, the products or services scoring higher rating prediction values. 

These products carry the highest probability, among all products or services, that the user 

will actually like them and hence accept the recommendation (by clicking the product 

advertisement, buying the product or service, etc.) [3,4]. 

The first step of a typical CF system is to locate the ‘near neighbours’ (NNs) for each 

of its users. An NN of user u is another user v who shares similar likings with u. This can 

be found by taking the stored real ratings of users u and v, set_of_ratingsu, and set_of_rat-

ingsv, finding the ones given to common products or services i (i.e., the intersection of the 

two sets), and comparing them. If the majority of them are (to a large extent) similar, then 

these users are NNs with each other [5,6]. Typically, in modern CF RSs, the 
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aforementioned task is implemented using a user vicinity metric, such as the Pearson cor-

relation coefficient (PCC) and the cosine similarity (CS), which quantify the vicinity be-

tween two CF users with a numeric value [7,8]. 

The second step of a typical CF system is to compute a rating prediction value rpvu,i 

of user u to the product i; for this process, the CF system uses the real ratings of u’s NNs 

(found in the previous step) to the same item. The rationale behind this setting is that, in 

the real world, a person usually trusts the people considered closer to him/her (higher 

vicinity), when asking for a recommendation, regardless of the product or service cate-

gory [9,10]. 

The accuracy of CF systems is measured by the closeness of the rating prediction 

values to the real user rating values. Accuracy is a very active research field, where the 

majority of the research works aim at reducing the overall deviation between the pre-

dicted values of the ratings that the users would give to the products and the values of 

real user ratings to the products. In order to evaluate the success of the aforementioned 

process, the CF algorithms are applied to real CF rating datasets (such as the Amazon and 

the MovieLens datasets [11,12]), usually containing records consisting of the user, the 

product, the rating, and maybe additional information (from the rating timestamp to in-

formation concerning the user and/or the product). Accuracy is evaluated by hiding a 

percentage of the ratings, then trying to predict their values, and finally assessing how 

close the prediction is to the real rating. 

Despite a plethora of research works aiming to increase the CF rating prediction ac-

curacy [13–15], very limited research aims to examine the characteristics of CF users, prod-

ucts, or the dataset itself, which may affect the accuracy of CF rating predictions. An ex-

ception is the work of researchers that utilise the user neighbourhood [16–19]. These 

works have been performed, in general, for evaluating the performance of specific algo-

rithms. 

Our previous work [20] explored the accuracy of rating prediction features in sparse 

CF datasets, in a broader context, proving that a typical CF system which simply recom-

mends the items achieving higher rating prediction values than others may offer reduced 

recommendation accuracy, in many cases, and hence negatively affect the success of the 

RS. 

In this paper, we adapt the aforementioned research in the context of dense CF da-

tasets. More specifically: 

a. We explore the same rating prediction accuracy features in dense CF datasets but with 

different parameter values. For example, our previous work showed that, for sparse 

CF datasets, when a rating prediction is formulated using the real ratings of ≥4 NNs, 

it is an indication of a highly accurate rating prediction. For dense CF datasets, how-

ever, a user can have hundreds or even thousands of NNs. As a result, the percentage 

of the rating predictions formulated with ≥4 NNs is almost 100% and hence the output 

of the previous work cannot be applied in dense CF datasets; 

b. We examine (evaluate and parameterise) the effects of one extra rating prediction ac-

curacy feature, namely the NN variety, which, in contrast to sparse CF datasets, can 

be reliably quantified in dense CF datasets. 

To ascertain the reliability of the results produced, the present work uses (i) two widely 

accepted metrics of user similarity, (ii) two widely accepted rating prediction error met-

rics, (iii) six widely accepted dense CF datasets, and (iv) three different CF algorithms, so 

that it can experimentally derive insight on the rating prediction accuracy features. 

The rest of the paper is structured as follows: Section 2 overviews the related work, 

while in Section 3, we present, analyse, and evaluate the rating prediction features in 

dense CF datasets. The obtained results are discussed in Section 4, and Section 5 concludes 

the paper and outlines future work. The definitions for terms, notations, and abbrevia-

tions used in this paper are tabulated in Table 1. 

Table 1. Definitions for terms, notations, and abbreviations used. 
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Term/Notation Definition 

Near neighbour (NN) An NN of user u is another user v who shares similar likings with u 

PCC Pearson correlation coefficient 

CS Cosine similarity 

MAE Mean absolute error 

RMSE Root mean square error 

Uavg The average rating value of the user for whom the prediction is formulated 

Iavg The average rating value for the item for which the prediction is formulated 

UN The number of ratings entered by the user for whom the prediction is formulated 

IN 
The number of ratings that have been entered for the item for which the prediction is formu-

lated 

NNsvar The variance of the NNs’ ratings given to the item for which the prediction is formulated 

2. Related Work 

The CF system accuracy research is divided into two main categories. The first cate-

gory comprises algorithms which, apart from the basic information a CF system needs in 

order to produce rating predictions (i.e., the user–item–rating matrix), utilise supplemen-

tary elements or sources of information. These include user and item information, such as 

user relations in social networks (SNs) (friendship, trust, etc.), user demographic infor-

mation (gender, age, nationality, etc.), item categories (e.g., taxonomy) and characteristics 

(colour, price, availability, etc.), user reviews on an item, etc. The second category com-

prises algorithms that exploit only the basic CF information and the user–item–rating ma-

trix and formulate specialised processing methods (e.g., the clustering, computation, and 

exploitation of outliers, rating variability, etc.) to increase the rating prediction accuracy. 

Regarding the first category, Yang et al. [21] introduced a matrix factorisation (MF) 

technique which improves the performance of CF recommendations by integrating the 

sparse social trust network data with the sparse user rating data, among the same users. 

Their model-based technique maps CF users, based on their trust relationship, into low-

dimensional latent feature spaces, and aims to reflect the users’ reciprocal influence on the 

formation of their own ratings. Yang et al. [22] presented a set of MF- and NN-based RS and 

explore group affiliations and SN information for recommendations in social voting. They 

demonstrated that the aforementioned information can improve the accuracy of popularity-

based voting recommendations. They also observed that group and social information was 

proven to be more valuable to cold users. Hu et al. [23] presented a technique, namely MR3, 

which aligns the latent factors and hidden topics, in order to model item reviews and social 

relations with ratings, for improving the rating prediction accuracy. Furthermore, they in-

corporated the implicit feedback from ratings into their model, to enhance their technique. 

Margaris et al. [18] introduced an algorithm which combines the limited SN information of 

users’ social relations with the limited CF information of users’ ratings on items targeting 

the enhancement of both the rating prediction coverage and rating prediction accuracy in 

CF RSs. Their algorithm takes into account the utility and density of both CF and SN neigh-

bourhoods, by formulating two partial rating predictions: the CF score and the SN score. 

Then, it combines these scores using a weighted average metascore algorithm with user-

personalised weights. Pereira and Varma [24] presented a financial planning RS that modi-

fies the recommendation process to enhance the recommendations. They used a hybrid ap-

proach to overcome CF drawbacks, such as data sparsity, the new user cold-start problem, 

and overspecialisation, which combines CF techniques with demographic filtering. 

Ghasemi and Momtazi [25] introduced a technique that improves CF RSs by finding similar 

CF users based on both their ratings and reviews. They utilised two lexical-based tech-

niques, two word-neural representation techniques, and three text-neural representation 

techniques. Zhou et al. [26] introduced MLCF, a multi-label classification-based CF frame-

work that enhances the recommendation quality, which is based on three graphs, namely a 

user, an item, and a rating bipartite. They explored the latent correlations among items and 
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users. They also introduced a multi-label classification rating similarity metric which cap-

tures user-class-specific relationships. Finally, they introduced the integration of two multi-

label classification CF techniques, focusing on social information and rating, into a unified 

rating prediction technique. 

Although all the aforementioned works considerably enhance the CF rating predic-

tion accuracy and recommendation success, the source of supplementary information that 

is required (user SN information, user demographic information, user and item character-

istics, etc.) may not always be available and, hence, cannot be applied to every CF dataset. 

To this extent, Wang et al. [27] proposed the integration of the interactions between 

items and users. They introduced the neural graph CF, a recommendation framework that 

propagates embeddings on the user–item graph structure, which explicitly injects, into 

the embedding process, the collaborative signal. Yu et al. [28] proposed a two-sided cross-

domain CF model, which balances recommendation efficiency and accuracy. This model 

is based on selective ensemble learning considering both efficiency and accuracy. Their 

model first combines the item-sided with the user-sided auxiliary domains, aiming to en-

hance the target domain performance. The cross-domain CF problem is then transformed 

into an ensemble learning problem, thereby transforming the selective combination prob-

lem into a selective classifier problem. Ajaegbu [29] introduced an algorithm which bal-

ances three user similarity metrics to overcome cold-start issues. This algorithm mitigates 

the data sparsity and cold-start issues that the three traditional algorithms face, as well as 

retains the positive features the existing item-based CF algorithms have. Margaris et al. 

[30] presented an algorithm which improves the rating prediction accuracy in CF without 

the need for any kind of supplementary information. They achieved accuracy improve-

ment by enhancing the weight of the black sheep NNs’ opinions. More specifically, they 

adjusted the NN weights, based on the degree to which the NN and the target user deviate 

from each of the dominant ratings of each item. Zarzour et al. [31] introduced a new CF 

algorithm based on clustering techniques and dimensionality reduction. The proposed 

algorithm uses singular value decomposition to reduce the dimensionality, while it uses 

the K-means algorithm in order to cluster similar users. They also proposed and assessed 

a two-stage RS which produces efficient and accurate recommendations. Neysiani et al. 

[32] presented a method that produces association rules, based on genetic algorithms, 

which identify these association rules in an unsupervised manner, while at the same time, 

they are efficient for space search. For this method, the users do not need to specify sup-

port thresholds. Additionally, in contrast to traditional mining models, it does not need 

to discover a large number of rules. Chen et al. [33] presented a CF recommendation tech-

nique based on evolutionary clustering and user correlation. The authors pre-processed 

the rating matrix with dimension reduction and normalisation to obtain denser rating 

data. They used dynamic evolutionary clustering and the highest similar-interest NN re-

search. Finally, they proposed a user relationship metric that applies potential information 

and user satisfaction. 

Still, none of the aforementioned research works examines those features related to 

the rating prediction accuracy in CF datasets. An RS that typically recommends the items 

computed to have the highest rating prediction scores, without taking into account other 

features, may result in reduced recommendation accuracy and overall success and, hence, 

cause trust issues in its users. 

Recently, Margaris et al. [20] indicated that it may be better for an RS to recommend 

an item i2 computed to have a lower prediction value than item i1, if the rating prediction 

concerning i2 is found to be more reliable than the respective one for i1, by exploring, in 

a broader context, the rating prediction accuracy features in sparse CF datasets. They ex-

amined five rating prediction features, using sparse CF datasets, and found that three of 

them (the number of NNs participating in the rating prediction formulation, the mean 

rating value of the active user, and the mean rating value of the item) can indicate, in the 

majority of the cases, a reliable rating prediction. 



Information 2022, 13, 428 5 of 14 
 

 

The present work advances the state-of-the-art research regarding the rating predic-

tion accuracy features in CF, by (1) applying and parameterising the aforementioned rat-

ing prediction accuracy features in dense CF datasets, (2) applying and parameterising an 

additional rating prediction accuracy feature that can be reliably applied only in dense CF 

datasets, and (3) evaluating the rating prediction accuracy features using widely used and 

accepted dense CF datasets, error metrics, and user similarity metrics. Since the features 

tested in this work are derived from the original rating matrix (user–item–rating tuple) 

and do not need any kind of additional information, they prove useful to any CF algo-

rithm applied to dense CF datasets. 

3. Exploring Rating Prediction Features 

In this section, the six rating prediction features of the experimental part of our work 

are presented, analysed, and evaluated. More specifically, we present a thorough investi-

gation of the rating prediction features, examining their associations with improvement 

in the rating prediction accuracy in dense CF datasets. 

The six rating prediction features, along with their cases tested in the experimental 

procedure, are the following: 

• The percentage of the active user U’s near neighbours (NNs) taking part in the rating 

prediction (NN%): for this feature, we examined values from 0% to 24%, with the in-

crement step set to 3%; 

• The active user’s U average rating value (Uavg): for this feature, we examined the 

range from the minimum allowed rating value to the maximum allowed rating value 

in the dataset, with the increment step set to 0.5; 

• The average rating value of the item for which the prediction is computed (Iavg): for 

this feature, we examined the range from the minimum allowed rating value to the 

maximum allowed rating value in the dataset, with the increment step set to 0.5; 

• The number of items that the active user U has rated (UN): for this feature, we examined 

values from 100 to 500, and an extra case of >500, with the increment step set to 100; 

• The number of users that have rated item i for which the prediction is computed (IN): 

for this feature, we examined values from 100 to 500 and an extra case of >500, with 

the increment step set to 100; 

• The variance of the NNs’ ratings given to the item for which the prediction is com-

puted (NNsvar): for this feature, we examined values from 0.0 to 2.5, and an extra case 

of >2.5 with the increment step set to 0.25. 

To ascertain that our work is NN-independent, measurements were obtained using all the 

NNs each active user has, setting the NN vicinity threshold to 0.0 [20,34,35]. 

In our experiments, we used CF datasets that are widely accepted and used in CF 

research [36–38]. All datasets are relatively dense (their densities range from 0.13% to 

5.88%); Table 2 presents their essential information [12,39–41]. While there is no agreed 

threshold for classifying a dataset as “dense” or “sparse”, the density of all the datasets 

examined in this work is at least 60% higher than the density of the datasets examined in 

our previous work [20], which are characterised as “sparse”. The density of a dataset d is 

defined as the ratio of the number of elements of the user–item rating matrix that have 

non-null values to the total number of the elements of the user–item rating matrix. Density 

can be computed as 𝑑 =
#𝑅𝑎𝑡𝑖𝑛𝑔𝑠

#𝑈𝑠𝑒𝑟𝑠∗#𝐼𝑡𝑒𝑚𝑠
. To ascertain that a single rating value range was 

used, in order for the results of the different datasets to be comparable, the ratings in each 

dataset were normalised in the range [1.0–5.0], using the standard min–max formula [42], 

which is used in many CF research works [43–45]. 
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Table 2. Dataset information. 

Dataset # Dataset Name Density #Users #Items #Ratings 

1 MovieLens 25M “recommended for new research” 0.24% 162K 62K 25M 

2 
MovieLens Latest Small “recommended for education and develop-

ment” 
1.85% 600 9K 100K 

3 
MovieLens Latest Full “recommended for education and develop-

ment” 
0.17% 280K 58K 27M 

4 MovieLens 100K 5.88% 1K 1.7K 100K 

5 Dianping_SocialRec 2015 0.13% 148K 11K 2.1M 

6 FilmTrust 1.14% 1.5K 2K 35.5K 

In order to quantify the rating prediction accuracy, the following two CF rating pre-

diction error metrics were used [46,47]: 

1. The mean average error (MAE) metric, which handles all errors uniformly; 

2. The root-mean-squared error (RMSE) metric, which boosts the significance of large 

deviations between the real user rating and the rating prediction produced by the CF 

system. 

To compute the deviation between the rating prediction and the real rating value, the 

typical “hide-one” technique [48,49] was used for all the ratings in each dataset (where we 

sought to predict the value of all the ratings—one at a time—in the dataset). In more detail, 

each time one rating of the dataset is hidden, its value is predicted using the non-hidden 

ratings. “The “hide-one” or “leave-one-out cross-validation” approach is widely used in 

CF works [50–52], and it has the advantage of producing model estimates with less bias 

and more ease [53]. Its main disadvantage is that it cannot be applied online in very large 

datasets (due to the number of computational steps); however, in our work, it was per-

formed offline. 

To ascertain that our work is algorithm-independent, we obtained measurements us-

ing three different CF algorithms: 

• A “plain” CF algorithm [54,55]; 

• A sequential CF algorithm [56]; 

• A CF algorithm which exploits common rating histories until the review time of the 

item for which the prediction is being formulated [57]. 

A close agreement between the results from all the experiments was observed (less 

than 4% difference in all the cases); hence, for conciseness, we report only the results pro-

duced by the plain CF algorithm. 

3.1. The NNs’ Percentage Taking Part in the Rating Prediction 

Figure 1 illustrates the MAE observed for the six aforementioned dense datasets, con-

sidering the NN% feature and using the PCC user similarity metric. 
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Figure 1. Effect of the NN% feature, in the rating prediction MAE, when the PCC user similarity 

metric was used. 

For all the datasets, when the percentage of the NNs taking part in the rating prediction 

increased, an MAE drop was observed, until this percentage reached the value of 15%. After 

that value, a different behaviour between the datasets was observed; the MAE change be-

came non-monotonic. However, for all the cases, the MAE for values of NN% exceeding 

15% was less than the MAE at NN% = 15%. The average MAE and RMSE reductions from 

the case of NN% ≈ 0% to the case of NN% = 15% were measured to be equal to 13% and 12%, 

respectively. When the CS user similarity metric was used, the exact same phenomenon was 

observed. More specifically, the average MAE and RMSE reductions from the case of NN% 

≈ 0% to the case of NN% = 15% were measured to be equal to 10% and 9%, respectively. 

Overall, we can conclude that a correlation exists between the NN% feature and the 

rating prediction accuracy in dense CF datasets. 

3.2. Uavg Feature 

Figure 2 illustrates the MAE observed on the datasets, considering the Uavg feature 

and using the PCC user similarity metric. 

 

Figure 2. Effect of the Uavg feature, in the rating prediction MAE, when the PCC user similarity 
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in contrast to the case when the active user’s mean rating value was close to the rating 

range’s boundaries, and especially to the higher one (Uavg ≥ 4.5). In the latter case, the aver-

age MAE and RMSE observed were lower by 61% and 50%, respectively, when compared 

with the case in which the active user’s mean rating value was in the middle of the rating 

range (2 ≤ Uavg ≤ 3). When the CS user similarity metric was used, the exact same phenome-

non was observed. More specifically, the average MAE and RMSE observed for the cases in 

which the user’s mean rating was close to the upper rating scale boundary were 53% and 

46% smaller, respectively, when compared with the case in which the active user’s mean 

rating value was in the middle of the rating range (2 ≤ Uavg ≤ 3). Notably, this behaviour 

pattern was observed in all the datasets, regardless of their density, since the dataset density 

had no impact on the Uavg quantity. 

Overall, we can again conclude that a correlation exists between the Uavg feature and 

the rating prediction accuracy in dense CF datasets. 

3.3. Iavg Feature 

Figure 3 illustrates the MAE observed on the datasets, considering the Iavg feature and 

using the PCC user similarity metric. 

When the active item’s mean rating value was towards the low end of the rating range 

but not very close to it (1.5 ≤ Iavg ≤ 2.5), the prediction accuracy was low. Conversely, when 

the mean rating value of the active item is close to the boundaries of the rating range, the 

prediction accuracy is high, especially in the higher rating range. This was especially evident 

for values close to the upper boundary (Iavg ≥4.5). In the latter case, the average MAE and 

RMSE observed were 42% and 37% smaller, respectively, when compared with those of the 

case in which the active item’s mean rating value was in the “low-accuracy” area (1.5 ≤ Iavg 

≤ 2.5). When the CS user similarity metric was used, the exact same phenomenon was ob-

served. More specifically, the average MAE and RMSE observed were 40% and 37% re-

duced, respectively, when compared with those of the case in which the mean rating value 

of the active item was in the “low-accuracy” area (1.5 ≤ Iavg ≤ 2.5). 

 

Figure 3. Effect of the Iavg feature, in the rating prediction MAE, when the PCC user similarity metric 

was used. 
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Figure 4. Effect of the UN feature, in the rating prediction MAE, when the PCC user similarity metric 

was used. 
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Figure 5 illustrates the MAE observed on the datasets, considering the IN feature and 
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When the variance of the NNs’ ratings to the item for which the prediction was being 

formulated was relatively low, especially in the range of 0.25–0.75, a high level of predic-

tion accuracy was observed. More specifically, the average MAE reduction from the cases 

when IVAR > 2.5 to 0.25 ≤ IVAR ≤ 0.75 equalled 43%, while the respective average RMSE 

reduction equalled 40%. When the CS user similarity metric was used, we observed the 

exact same phenomenon. More specifically, the average MAE and RMSE reductions from 

IVAR > 2.5 to 0.25 ≤ IVAR ≤ 0.75 were measured to be equal to 33% and 27%, respectively. 

Overall, we can conclude that a correlation exists between the NN% feature and the 

rating prediction accuracy in dense CF datasets. 

 

Figure 6. Effect of the NNsvar feature, in the rating prediction MAE, when the PCC user similarity 

metric was used. 
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much easier for a rating prediction system to predict the next rating of a user who 

almost always enters either excellent or bad ratings. 

3. The predicted item’s mean rating value was close to the limits of the rating range: it 

is much easier for a rating prediction system to predict the next rating for an item 

that is practically considered either widely acceptable or unacceptable. 

4. The variance of the user’s NNs’ ratings to the predicted item was relatively low (in 

the 0.25–0.75 range): it is easier for a rating prediction system to predict a rating for a 

user whose close people share similar opinions (either good or bad) for an item. 

Using the above findings, the accuracy of an RS can be significantly improved, since 

the RS may opt not to recommend an item with a high prediction score that is, however, 

deemed of low reliability but include an alternative item in the recommendation which 

may have a slightly lower prediction but is associated with high confidence. 

It is worth noting that the FilmTrust dataset exhibited different behaviour than the 

other datasets used in the experiments, in particular regarding the Iavg and UN features 

(Figures 3 and 4). The diverging behaviour observed in Figure 3 is due to the predictions 

related to those items with low Iavg values, the variance of which was found to be very 

high in this dataset. Notably, the FilmTrust dataset had the lowest rating average among 
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all the datasets (3.00 against 3.53 of the MovieLens datasets and 3.74 in the Dianping So-

cialRec 2015 datasets). The deviating behaviour in Figure 4 is attributed to the fact that, in 

the FilmTrust dataset, most users have rated few items, and consequently, the FilmTrust 

data points were associated with high UN data values (ranges of 301–400 and 401–500) 

practically representing outliers (less than 20 users per range), while the data point corre-

sponding to the range “>500” was missing because no user had more than 500 ratings in 

this dataset. A more in-depth analysis of the effect of the statistical distribution of dataset 

features and skews on the behaviour of the dataset will be considered in our future work. 

5. Conclusions and Future Work 

In this work, six rating prediction accuracy features in dense CF datasets, with the 

aim to determine whether they directly affect the rating prediction accuracy, were ex-

plored. To ascertain the reliability of the results produced, two widely accepted metrics 

of user similarity, two widely accepted rating prediction error metrics, six widely accepted 

dense CF datasets, and three different CF algorithms were used to experimentally provide 

insight into the rating prediction accuracy features. 

The evaluation results showed that (a) the percentage of the active user’s NNs taking 

part in the rating prediction, (b) the active user’s mean rating value, (c) the predicted 

item’s mean rating value, and (d) the variance of the active user NNs’ ratings in relation 

to the predicted item were correlated with the reduction in the rating prediction accuracy. 

In our future work, we plan to refine the CF rating prediction algorithm, by quanti-

fying the reliability of a CF rating prediction, based on the four prediction features that 

were found to affect the rating prediction accuracy in this work. Moreover, we will focus 

on exploring additional rating prediction features in dense CF datasets. 

Author Contributions: Conceptualisation, D.S., D.M., and C.V.; methodology, D.S., D.M., and C.V.; 

software, D.S., D.M., and C.V.; validation, D.S., D.M., and C.V.; formal analysis, D.S., D.M., and 

C.V.; investigation, D.S., D.M., and C.V.; resources, D.S., D.M., and C.V.; data curation, D.S., D.M., 

and C.V.; writing—original draft preparation, D.S., D.M., and C.V.; writing—review and editing, 

D.S., D.M., and C.V.; visualisation, D.S., D.M., and C.V.; supervision, D.S., D.M., and C.V.; project 

administration, D.S., D.M., and C.V. All authors have read and agreed to the published version of 

the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Publicly available datasets were analysed in this study. These data 

can be found here: https://grouplens.org/datasets/movielens/; https://guoguibing.github.io/li-

brec/datasets.html; and https://lihui.info/data/dianping/ (accessed on 20 July 2022). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lara-Cabrera, R.; González-Prieto, Á .; Ortega, F. Deep Matrix Factorization Approach for Collaborative Filtering Recommender 

Systems. Appl. Sci. 2020, 10, 4926. https://doi.org/10.3390/app10144926. 

2. Cui, Z.; Xu, X.; Xue, F.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. Personalized Recommendation System Based on Collaborative 

Filtering for IoT Scenarios. IEEE Trans. Serv. Comput. 2020, 13, 685–695. https://doi.org/10.1109/TSC.2020.2964552. 

3. Balabanović, M.; Shoham, Y. Fab: Content-Based, Collaborative Recommendation. Commun. ACM 1997, 40, 66–72. 

https://doi.org/10.1145/245108.245124. 

4. Cechinel, C.; Sicilia, M.-Á .; Sánchez-Alonso, S.; García-Barriocanal, E. Evaluating Collaborative Filtering Recommendations 

inside Large Learning Object Repositories. Inf. Processing Manag. 2013, 49, 34–50. https://doi.org/10.1016/j.ipm.2012.07.004. 

5. Herlocker, J.L.; Konstan, J.A.; Terveen, L.G.; Riedl, J.T. Evaluating Collaborative Filtering Recommender Systems. ACM Trans. 

Inf. Syst. 2004, 22, 5–53. https://doi.org/10.1145/963770.963772. 

6. Park, Y.; Park, S.; Jung, W.; Lee, S. Reversed CF: A Fast Collaborative Filtering Algorithm Using a k-Nearest Neighbor Graph. 

Expert Syst. Appl. 2015, 42, 4022–4028. https://doi.org/10.1016/j.eswa.2015.01.001. 



Information 2022, 13, 428 12 of 14 
 

 

7. Sinha, B.B.; Dhanalakshmi, R. A Recommender System Based on a New Similarity Metric and Upgraded Crow Search 

Algorithm. IFS 2020, 39, 3167–3182. https://doi.org/10.3233/JIFS-191594. 

8. Mazurowski, M.A. Estimating Confidence of Individual Rating Predictions in Collaborative Filtering Recommender Systems. 

Expert Syst. Appl. 2013, 40, 3847–3857. https://doi.org/10.1016/j.eswa.2012.12.102. 

9. Ning, H.; Dhelim, S.; Aung, N. PersoNet: Friend Recommendation System Based on Big-Five Personality Traits and Hybrid 

Filtering. IEEE Trans. Comput. Soc. Syst. 2019, 6, 394–402. https://doi.org/10.1109/TCSS.2019.2903857. 

10. Hassan, T. Trust and Trustworthiness in Social Recommender Systems. In Proceedings of the Companion Proceedings of The 2019 

World Wide Web Conference; ACM: San Francisco, CA, USA, 2019; pp. 529–532. 

11. He, R.; McAuley, J. Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering. 

In Proceedings of the Proceedings of the 25th International Conference on World Wide Web; International World Wide Web 

Conferences Steering Committee, Montréal, Québec, Canada, 11 April 2016; pp. 507–517. 

12. Harper, F.M.; Konstan, J.A. The MovieLens Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 2016, 5, 1–19. 

https://doi.org/10.1145/2827872. 

13. Liu, H.; Hu, Z.; Mian, A.; Tian, H.; Zhu, X. A New User Similarity Model to Improve the Accuracy of Collaborative Filtering. 

Knowl. -Based Syst. 2014, 56, 156–166. https://doi.org/10.1016/j.knosys.2013.11.006. 

14. Zhang, P.; Zhang, Z.; Tian, T.; Wang, Y. Collaborative Filtering Recommendation Algorithm Integrating Time Windows and 

Rating Predictions. Appl. Intell. 2019, 49, 3146–3157. https://doi.org/10.1007/s10489-019-01443-2. 

15. Koren, Y.; Rendle, S.; Bell, R. Advances in Collaborative Filtering. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, 

B., Eds.; Springer US: New York, NY, USA, 2022; pp. 91–142, ISBN 978-1-07-162196-7. 

16. Koren, Y. Factor in the Neighbors: Scalable and Accurate Collaborative Filtering. ACM Trans. Knowl. Discov. Data 2010, 4, 1–24. 

https://doi.org/10.1145/1644873.1644874. 

17. Adamopoulos, P.; Tuzhilin, A. On Over-Specialization and Concentration Bias of Recommendations: Probabilistic 

Neighborhood Selection in Collaborative Filtering Systems. In Proceedings of the Proceedings of the 8th ACM Conference on 

Recommender systems—RecSys ’14; ACM Press: Foster City, Silicon Valley, CA, USA, 2014; pp. 153–160. 

18. Margaris, D.; Spiliotopoulos, D.; Vassilakis, C. Social Relations versus near Neighbours: Reliable Recommenders in Limited 

Information Social Network Collaborative Filtering for Online Advertising. In Proceedings of the Proceedings of the 2019 IEEE/ACM 

International Conference on Advances in Social Networks Analysis and Mining; ACM: Vancouver British, Columbia, Canada, 2019; 

pp. 1160–1167. 

19. Verstrepen, K.; Goethals, B. Unifying Nearest Neighbors Collaborative Filtering. In Proceedings of the Proceedings of the 8th ACM 

Conference on Recommender systems—RecSys ’14; ACM Press: Foster City, Silicon Valley, CA, USA, 2014; pp. 177–184. 

20. Margaris, D.; Vassilakis, C.; Spiliotopoulos, D. On Producing Accurate Rating Predictions in Sparse Collaborative Filtering 

Datasets. Information 2022, 13, 302. https://doi.org/10.3390/info13060302. 

21. Yang, B.; Lei, Y.; Liu, J.; Li, W. Social Collaborative Filtering by Trust. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1633–1647. 

https://doi.org/10.1109/TPAMI.2016.2605085. 

22. Yang, X.; Liang, C.; Zhao, M.; Wang, H.; Ding, H.; Liu, Y.; Li, Y.; Zhang, J. Collaborative Filtering-Based Recommendation of 

Online Social Voting. IEEE Trans. Comput. Soc. Syst. 2017, 4, 1–13. https://doi.org/10.1109/TCSS.2017.2665122. 

23. Hu, G.-N.; Dai, X.-Y.; Qiu, F.-Y.; Xia, R.; Li, T.; Huang, S.-J.; Chen, J.-J. Collaborative Filtering with Topic and Social Latent 

Factors Incorporating Implicit Feedback. ACM Trans. Knowl. Discov. Data 2018, 12, 1–30. https://doi.org/10.1145/3127873. 

24. Pereira, N.; Varma, S.L. Financial Planning Recommendation System Using Content-Based Collaborative and Demographic 

Filtering. In Smart Innovations in Communication and Computational Sciences; Panigrahi, B.K., Trivedi, M.C., Mishra, K.K., Tiwari, 

S., Singh, P.K., Eds.; Advances in Intelligent Systems and Computing; Springer Singapore: Singapore, 2019; Volume 669, pp. 

141–151, ISBN 978-981-10-8967-1. 

25. Ghasemi, N.; Momtazi, S. Neural Text Similarity of User Reviews for Improving Collaborative Filtering Recommender Systems. 

Electron. Commer. Res. Appl. 2021, 45, 101019. https://doi.org/10.1016/j.elerap.2020.101019. 

26. Zhou, Y.; Liu, L.; Zhang, Q.; Lee, K.; Palanisamy, B. Enhancing Collaborative Filtering with Multi-Label Classification. In 

Computational Data and Social Networks; Tagarelli, A., Tong, H., Eds.; Lecture Notes in Computer Science; Springer International 

Publishing: Cham, 2019; Volume 11917, pp. 323–338, ISBN 978-3-030-34979-0. 

27. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.-S. Neural Graph Collaborative Filtering. In Proceedings of the Proceedings of the 

42nd International ACM SIGIR Conference on Research and Development in Information Retrieval; ACM: Paris, France, 2019; pp. 165–

174. 

28. Yu, X.; Peng, Q.; Xu, L.; Jiang, F.; Du, J.; Gong, D. A Selective Ensemble Learning Based Two-Sided Cross-Domain Collaborative 

Filtering Algorithm. Inf. Processing Manag. 2021, 58, 102691. https://doi.org/10.1016/j.ipm.2021.102691. 

29. Ajaegbu, C. An Optimized Item-Based Collaborative Filtering Algorithm. J. Ambient. Intell. Human Comput. 2021, 12, 10629–

10636. https://doi.org/10.1007/s12652-020-02876-1. 

30. Margaris, D.; Spiliotopoulos, D.; Vassilakis, C. Augmenting Black Sheep Neighbour Importance for Enhancing Rating 

Prediction Accuracy in Collaborative Filtering. Appl. Sci. 2021, 11, 8369. https://doi.org/10.3390/app11188369. 

31. Zarzour, H.; Al-Sharif, Z.; Al-Ayyoub, M.; Jararweh, Y. A New Collaborative Filtering Recommendation Algorithm Based on 

Dimensionality Reduction and Clustering Techniques. In Proceedings of the 2018 9th International Conference on Information and 

Communication Systems (ICICS); IEEE: Irbid, Jordan, 2018; pp. 102–106. 



Information 2022, 13, 428 13 of 14 
 

 

32. Faculty of Electrical & Computer Engineering, University of Kashan, Kashan, Isfahan, Iran; Neysiani, B.S.; Soltani, N.; Mofidi, 

R.; Nadimi-Shahraki, M.H. Improve Performance of Association Rule-Based Collaborative Filtering Recommendation Systems 

Using Genetic Algorithm. IJITCS 2019, 11, 48–55. https://doi.org/10.5815/ijitcs.2019.02.06. 

33. Chen, J.; Zhao, C.; Uliji; Chen, L. Collaborative Filtering Recommendation Algorithm Based on User Correlation and 

Evolutionary Clustering. Complex Intell. Syst. 2020, 6, 147–156. https://doi.org/10.1007/s40747-019-00123-5. 

34. Chen, V.X.; Tang, T.Y. Incorporating Singular Value Decomposition in User-Based Collaborative Filtering Technique for a 

Movie Recommendation System: A Comparative Study. In Proceedings of the Proceedings of the 2019 the International Conference 

on Pattern Recognition and Artificial Intelligence—PRAI ’19; ACM Press: Wenzhou, China, 2019; pp. 12–15. 

35. Wu, C.-S.M.; Garg, D.; Bhandary, U. Movie Recommendation System Using Collaborative Filtering. In Proceedings of the 2018 

IEEE 9th International Conference on Software Engineering and Service Science (ICSESS); IEEE: Beijing, China, 2018; pp. 11–15. 

36. Alam, M.T.; Ubaid, S.; Shakil; Sohail, S.S.; Nadeem, M.; Hussain, S.; Siddiqui, J. Comparative Analysis of Machine Learning 

Based Filtering Techniques Using MovieLens Dataset. Procedia Computer Science 2021, 194, 210–217. 

https://doi.org/10.1016/j.procs.2021.10.075. 

37. Liu, G. An Ecommerce Recommendation Algorithm Based on Link Prediction. Alex. Eng. J. 2022, 61, 905–910. 

https://doi.org/10.1016/j.aej.2021.04.081. 

38. Luo, S.; Yang, Y.; Zhang, K.; Sun, P.; Wu, L.; Hong, R. Self-Supervised Cross Domain Social Recommendation. In Proceedings of 

the Proceedings of the 8th International Conference on Computing and Artificial Intelligence; ACM: Tianjin, China, 2022; pp. 286–292. 

39. Guo, G.; Zhang, J.; Thalmann, D.; Yorke-Smith, N. ETAF: An Extended Trust Antecedents Framework for Trust Prediction. In 

Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014); 

IEEE: China, 2014; pp. 540–547. 

40. Li, H.; Liu, Y.; Mamoulis, N.; Rosenblum, D.S. Translation-Based Sequential Recommendation for Complex Users on Sparse 

Data. IEEE Trans. Knowl. Data Eng. 2020, 32, 1639–1651. https://doi.org/10.1109/TKDE.2019.2906180. 

41. Li, H.; Wu, D.; Mamoulis, N. A Revisit to Social Network-Based Recommender Systems. In Proceedings of the Proceedings of the 

37th international ACM SIGIR conference on Research & development in information retrieval; ACM: Gold Coast, Queensland, 

Australia, 2014; pp. 1239–1242. 

42. Daqing He; Wu, D. Toward a Robust Data Fusion for Document Retrieval. In Proceedings of the 2008 International Conference on 

Natural Language Processing and Knowledge Engineering; IEEE: Beijing, China, 2008; pp. 1–8. 

43. Wang, K.; Chen, Z.; Wang, Y.S.; Yang, Z.N. Feature Fusion Recommendation Algorithm Based on Collaborative Filtering. In 

Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI); IEEE: Taiyuan, 

China, 2019; pp. 176–180. 

44. Margaris, D.; Vassilakis, C. Improving Collaborative Filtering’s Rating Prediction Quality by Considering Shifts in Rating 

Practices. In Proceedings of the 2017 IEEE 19th Conference on Business Informatics (CBI); IEEE: Thessaloniki, Greece, 2017; pp. 158–

166. 

45. Manochandar, S.; Punniyamoorthy, M. A New User Similarity Measure in a New Prediction Model for Collaborative Filtering. 

Appl. Intell. 2021, 51, 586–615. https://doi.org/10.1007/s10489-020-01811-3. 

46. Candillier, L.; Meyer, F.; Boullé, M. Comparing State-of-the-Art Collaborative Filtering Systems. In Machine Learning and Data 

Mining in Pattern Recognition; Perner, P., Ed.; Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 

2007; Volume 4571, pp. 548–562, ISBN 978-3-540-73498-7. 

47. Candillier, L.; Meyer, F.; Fessant, F. Designing Specific Weighted Similarity Measures to Improve Collaborative Filtering 

Systems. In Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects; Perner, P., Ed.; Lecture 

Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2008; Volume 5077, pp. 242–255, ISBN 978-3-540-

70717-2. 

48. Kai Yu; Schwaighofer, A.; Tresp, V.; Xiaowei Xu; Kriegel, H. Probabilistic Memory-Based Collaborative Filtering. IEEE Trans. 

Knowl. Data Eng. 2004, 16, 56–69. https://doi.org/10.1109/TKDE.2004.1264822. 

49. Wang, J.; Lin, K.; Li, J. A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Slope One Scheme. 

In Proceedings of the 2013 8th International Conference on Computer Science & Education; IEEE: Colombo, Sri Lanka, 2013; pp. 1473–

1476. 

50. Pal, B.; Jenamani, M. Trust Inference Using Implicit Influence and Projected User Network for Item Recommendation. J. Intell. 

Inf. Syst. 2019, 52, 425–450. https://doi.org/10.1007/s10844-018-0537-0. 

51. Yazdanfar, N.; Thomo, A. LINK RECOMMENDER: Collaborative-Filtering for Recommending URLs to Twitter Users. Procedia 

Comput. Sci. 2013, 19, 412–419. https://doi.org/10.1016/j.procs.2013.06.056. 

52. Ronen, R.; Yom-Tov, E.; Lavee, G. Recommendations Meet Web Browsing: Enhancing Collaborative Filtering Using Internet 

Browsing Logs. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE); IEEE: Helsinki, Finland, 

2016; pp. 1230–1238. 

53. Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction Error Estimation: A Comparison of Resampling Methods. Bioinformatics 

2005, 21, 3301–3307. https://doi.org/10.1093/bioinformatics/bti499. 

54. Konstan, J.A.; Miller, B.N.; Maltz, D.; Herlocker, J.L.; Gordon, L.R.; Riedl, J. GroupLens: Applying Collaborative Filtering to 

Usenet News. Commun. ACM 1997, 40, 77–87. https://doi.org/10.1145/245108.245126. 

55. Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM 

1992, 35, 61–70. https://doi.org/10.1145/138859.138867. 



Information 2022, 13, 428 14 of 14 
 

 

56. Li, J.; Wang, Y.; McAuley, J. Time Interval Aware Self-Attention for Sequential Recommendation. In Proceedings of the Proceedings 

of the 13th International Conference on Web Search and Data Mining; ACM: Houston TX, USA, 2020; pp. 322–330. 

57. Margaris, D.; Spiliotopoulos, D.; Vassilakis, C.; Vasilopoulos, D. Improving Collaborative Filtering’s Rating Prediction Accuracy 

by Introducing the Experiencing Period Criterion. Neural Comput. Applic. 2020. https://doi.org/10.1007/s00521-020-05460-y. 

 

 


